ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Yao Xiao, Lin-Wen Hu, Charles Forsberg, Suizheng Qiu, Guanghui Su, Kun Chen, Naxiu Wang
Nuclear Technology | Volume 187 | Number 3 | September 2014 | Pages 221-234
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-93
Articles are hosted by Taylor and Francis Online.
The fluoride salt–cooled high-temperature reactor (FHR) is an advanced reactor concept, which uses high-temperature TRISO fuel with a low-pressure liquid salt coolant. The design of a fluoride salt–cooled high-temperature test reactor (FHTR) is a key step in the development of the FHR technology and is currently in progress in both China and the United States. An FHTR based on a pebble bed core design with coolant temperature 600°C to 700°C is being planned for construction by the Chinese Academy of Sciences’ Thorium Molten Salt Reactor Research Center, Shanghai Institute of Applied Physics (SINAP). This paper provides a preliminary thermal-hydraulic licensing analysis of an FHTR using SINAP’s pebble core design as a reference case. The operation limits based on criteria outlined in U.S. regulatory guidelines are evaluated. Limiting safety system settings (LSSSs) considering uncertainties for forced convection and natural convection are obtained. The LSSS power and coolant outlet temperature, respectively, are 24.83 MW and 720°C for forced convection and 1.19 MW and 720°C for natural convection. The maximum temperature for the structural materials of 730°C is the most limiting constraint of the FHTR design.