ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Hirokazu Ohta, Takanari Ogata, Toru Obara
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 198-207
Regular Technical Paper | Fission Reactors | doi.org/10.13182/NT13-105
Articles are hosted by Taylor and Francis Online.
Innovative fuel design measures to attain a much higher burnup than that obtained using the conventional concept were investigated for a fast reactor (FR) metal fuel. Considering the typical mechanism of metal fuel degradation, three innovative design measures were proposed: (a) a decrease in plenum pressure by adopting the fission gas vent design, (b) prevention of fuel-cladding chemical interaction by lining the cladding inner wall, and (c) mitigation of fuel-cladding mechanical interaction by reducing the fuel smear density. The effects of these design measures on increasing the burnup were analyzed with ALFUS, an irradiation behavior analysis code for FR metal fuels. The ALFUS analysis revealed that a very high burnup of >40 at. % can be attained under the conventional design criteria for securing fuel integrity by applying these innovative measures. Neutronic analysis of a metal fuel core employing these design measures indicated that a high burnup of >40 at. % at the assembly peak can be attained while suppressing the burnup reactivity swing to almost the same level as that of conventional cores with normal burnup through the use of a minor actinide–containing fuel.