ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Aku Itälä, Mika Laitinen, Merja Tanhua-Tyrkkö, Markus Olin
Nuclear Technology | Volume 187 | Number 2 | August 2014 | Pages 169-174
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT13-79
Articles are hosted by Taylor and Francis Online.
The bentonite barrier is an essential part of a safe spent fuel repository in granitic bedrock. One of the most important safety functions of bentonite buffer is to limit groundwater flow so that all mass transport takes place by diffusion. In this work a new mathematical model was developed to define the transport of ions inside the bentonite, where there are bound interlayer water and free extra layer water and sorption capability. This model is tested in a specified geometry and calculated by two numerical platforms—Numerrin and COMSOL Multiphysics—and compared to the original TOUGHREACT model. The model comparison was not a straightforward task because of different approaches in the model setup. Therefore, all the equations are written down, and parameterization is done to create model descriptions near each other. The developed model adapts easily, and there are many new ideas to be tested in bridging the gap between performance assessment and real systems.