ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Longcheng Liu, Ivars Neretnieks
Nuclear Technology | Volume 150 | Number 2 | May 2005 | Pages 132-144
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT05-A3611
Articles are hosted by Taylor and Francis Online.
A multitude of simulations have been made for different types of rough-walled fractures, by using FEMLAB®, to evaluate the mass transfer to and from water flowing through a fracture with spatially variable apertures and with an arbitrary angle of intersection to a canister that contains spent nuclear fuel. This paper presents and discusses only the results obtained for the Gaussian fractures.The simulations suggest that the intersection angle has only a minor influence on both the volumetric and the equivalent flow rates. The standard deviation of the distribution of the volumetric flow rates of the many realizations increases with increasing roughness and spatial correlation length of the aperture field, and so does that of the equivalent flow rates. The mean of the distribution of the volumetric flow rates is determined, however, solely by the hydraulic aperture, while that of the equivalent flow rates is determined by the mechanical aperture.Based upon the analytical solutions for the parallel plate model, it has been found that the distributions of both the volumetric and the equivalent flow rates are close to the Normal. Thus, two simple expressions can be devised to quantify the stochastic properties of fluid flow and solute transport through spatially variable fractures without making detailed calculations in every fracture intersecting a deposition hole or a tunnel.