ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
G. Rodriguez, O. Gastaldi, F. Baque
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 100-110
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3608
Articles are hosted by Taylor and Francis Online.
The Commissariat à l'Energie Atomique (CEA) has recently developed and/or conducted experiments on several processes in support of the decommissioning of two French liquid-metal fast reactors (LMFRs), Rapsodie and Superphénix, as well as on the treatment of CEA sodium wastes. CEA has demonstrated that it is possible to define appropriate and efficient processes to meet the different situations encountered in decommissioning LMFRs. Mechanical techniques derived from standard technologies have been successfully applied to fast reactor decommissioning to complete primary vessel draining from sodium. In addition, specific chemical processes have been developed to deal safely with metallic sodium reactivity. Sodium-contaminated equipment has been successfully cleaned by reacting sodium with water mist in an atmosphere with carbon dioxide to form inert sodium carbonate. Bulk sodium has been successfully converted into aqueous caustic soda by injection of liquid-metallic sodium into sodium hydroxide solution. Several processes were also defined to deal with specific sodium wastes. In all cases the principle is based on a sodium/water chemical reaction where the released hydrogen and heat are controlled. With the development of a wide variety of processes, all steps in the decommissioning of LMFRs are assumed to be now properly mastered.