ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Kazunori Isozaki, Takashi Ashida, Kouzou Sumino, Satoru Nakai
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 56-66
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3605
Articles are hosted by Taylor and Francis Online.
The purpose of the MK-III program is to upgrade the irradiation capability of the liquid sodium-cooled experimental fast reactor JOYO. As a result, the neutron flux density of the core was increased, and the reactor thermal power was increased to 140 MW(thermal) from the originally designed 100 MW(thermal). To accommodate the increased thermal power, the flow rates of sodium coolant in the primary and secondary systems were increased by 20 and 10%, respectively. Also, all intermediate heat exchangers and dump heat exchangers were replaced with new ones. The replacement of these large sodium components was carried out over an [approximately]1-yr period with both fuel and molten sodium still in the reactor vessel (RV).Major challenges in the replacement were the control of impurity ingress to existing systems and protection from radiation exposure in the high-dose-rate regions inside the containment vessel. During the replacement, the seal bag method, impurity concentration monitoring of cover gas, and low-pressure control of cover gas were applied to prevent damage to existing components and systems, such as the RV, fuel subassemblies, sodium piping, and tanks. The measures taken to reduce the radiation exposure were a lowering of the surrounding dose rate through the use of temporary shielding, shortening of the operation time near the high-dose-rate area by first doing thorough training, and the employment of protection equipment to avoid contamination. The replacement of components was completed without major trouble, and methods applied for the replacement proved to be effective in the operation and maintenance of sodium-cooled reactors.