ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Kazunori Isozaki, Takashi Ashida, Kouzou Sumino, Satoru Nakai
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 56-66
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3605
Articles are hosted by Taylor and Francis Online.
The purpose of the MK-III program is to upgrade the irradiation capability of the liquid sodium-cooled experimental fast reactor JOYO. As a result, the neutron flux density of the core was increased, and the reactor thermal power was increased to 140 MW(thermal) from the originally designed 100 MW(thermal). To accommodate the increased thermal power, the flow rates of sodium coolant in the primary and secondary systems were increased by 20 and 10%, respectively. Also, all intermediate heat exchangers and dump heat exchangers were replaced with new ones. The replacement of these large sodium components was carried out over an [approximately]1-yr period with both fuel and molten sodium still in the reactor vessel (RV).Major challenges in the replacement were the control of impurity ingress to existing systems and protection from radiation exposure in the high-dose-rate regions inside the containment vessel. During the replacement, the seal bag method, impurity concentration monitoring of cover gas, and low-pressure control of cover gas were applied to prevent damage to existing components and systems, such as the RV, fuel subassemblies, sodium piping, and tanks. The measures taken to reduce the radiation exposure were a lowering of the surrounding dose rate through the use of temporary shielding, shortening of the operation time near the high-dose-rate area by first doing thorough training, and the employment of protection equipment to avoid contamination. The replacement of components was completed without major trouble, and methods applied for the replacement proved to be effective in the operation and maintenance of sodium-cooled reactors.