ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Thomas B. Rezentes, Mark A. Prelas, Eric Lukosi, Matthew L. Watermann, Jack Crawford, and Richard H. Olsher
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 96-102
Technical Note | Radiation Transport and Protection | doi.org/10.13182/NT11-105
Articles are hosted by Taylor and Francis Online.
A computer-based investigative technique, using the Los Alamos Monte Carlo code MCNP5 version 1.51 (Radiation Safety Information Computational Center), was completed to assess the shallow dose equivalent (SDE) reported on the Landauer, Inc.,TM Luxel+ optically stimulated light (OSL) dosimeter. Experimental test irradiations were conducted on 18 OSL dosimeters through various controlled exposures to the source (10 mCi 90Sr). The reported SDE for each test irradiation was compared to the results for SDE calculated using MCNP5. All test irradiation experiments were conducted with the 90Sr source placed in direct contact with the dosimeter with slight placement changes across the dosimeter face. It was found that these slight adjustments caused vast differences in reported doses by Landauer. The SDE determined in a tissue matrix using MCNP5 was studied for two of the dosimeter badge geometries, and it was found that some qualitative agreement exists between the reported and simulated doses in contradiction with the experimental results. Further simulated analysis was not conducted because precise source-dosimeter geometries and the algorithm used by Landauer to analyze its Luxel+ OSL dosimeters were not known. These results indicate that a future study should be conducted with more rigorous simulated benchmarking to verify these results.