ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Ataul Bariand, Jin Jiang
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 82-95
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT13-1
Articles are hosted by Taylor and Francis Online.
Applications of wireless technologies in nuclear power plants (NPPs), in particular for monitoring purposes, have been gaining popularity recently. It has been shown that wireless technologies can offer several advantages over wired solutions. However, many challenges need to be overcome before widespread adoption of wireless systems in nuclear industries. This paper has extended the existing work in this area and has developed a systematic procedure to deploy a wireless sensor network within a NPP containment. The developed scheme deals with the following challenges explicitly: (a) restrictions on the peak transmission power of the wireless sensor modules, (b) workaround of large concrete and metal structures, and (c) avoidance of locations with high radiation levels. Starting from the sensor locations dictated by the variables to be measured, the scheme determines the positions of the wireless relaying modules in a three-dimensional containment space to ensure reliable data communication. The results from case studies under realistic NPP containment conditions demonstrate the practical value of the proposed solution.