ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Takashi Ishibashi, Susumu Tsuchino, Shiro Matsumoto, and Fumio Kasahara
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 57-68
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT13-94
Articles are hosted by Taylor and Francis Online.
To investigate the clogging of high-efficiency particulate air (HEPA) filters by soot during fire events, the Carman-Kozeny relation, which is an equation of pressure drop for fluid passing through a particle packed layer, has been applied to the pressure drop evaluation of fluid through the soot deposition layer on a HEPA filter. Particular attention has been paid to the characteristics of the soot and the compressibility of the soot deposition layer on the HEPA filter. It has been shown that the pressure drop of fluid through the soot deposition layer depends on the specific resistance and compression coefficient of the soot deposition layer as well as on the amount of soot deposited per unit area of HEPA filter and the filtration air flow velocity.