ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
W. M. Stacey, C. L. Stewart, J.-P. Floyd, T. M. Wilks, A. P. Moore, A. T. Bopp, M. D. Hill, S. Tandon, and A. S. Erickson
Nuclear Technology | Volume 187 | Number 1 | July 2014 | Pages 15-43
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-96
Articles are hosted by Taylor and Francis Online.
The conceptual design of the subcritical advanced burner reactor (SABR), a 3000-MW(thermal) annular, modular sodium pool–type fast reactor, fueled by metallic transuranic (TRU) fuel processed from discharged light water reactor fuel and driven by a tokamak D-T fusion neutron source based on ITER physics and technology, has been substantially upgraded. Several issues related to the integration of fission and fusion technologies have been addressed, e.g., refueling a modular sodium pool reactor located within the magnetic coil configuration of a tokamak, achieving long-burn quasi-steady-state plasma operation, access for heating and current drive power transmission to a toroidal plasma surrounded by a sodium pool fast reactor, suppression of magnetohydrodynamic effects in a liquid metal coolant flowing in a magnetic field, tritium self-sufficiency in a TRU transmutation reactor, shielding the superconducting magnets from fusion and fission neutrons, etc. A design concept for a SABR that could be deployed within 25 years, based on the IFR/PRISM metal-fuel, sodium pool fast reactor technology and on the ITER fusion physics and technology, is presented. This design concept can be used for realistic fuel cycle, dynamic safety, and other performance analyses of a SABR.