ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
J. Guidez, P. Le Coz, L. Martin, P. Mariteau, R. Dupraz
Nuclear Technology | Volume 150 | Number 1 | April 2005 | Pages 37-43
Technical Paper | Sodium Technology | doi.org/10.13182/NT05-A3603
Articles are hosted by Taylor and Francis Online.
The French fast reactor prototype Phénix was put into commercial operation in 1974. The total time of power operation of the plant is [approximately]100000 h representing 3860 equivalent fuel power days (EFPD). With the initial objective of the demonstration of fast breeder reactors achieved, since the early 1990s, the role of the reactor as an irradiation facility has been emphasized, particularly in support of the Commissariat à l'Energie Atomique research and development program on long-lived radioactive waste transmutation. This new objective required an extension of the planned reactor lifetime. A major renovation program was carried out in the plant from 1994 to 2003, involving safety upgrading, component inspections and repairs, and the 10-yr statutory maintenance. The main work consisted of the addition of a backup control rod to the reactor; improvement of earthquake protection by reinforcement of buildings and components and replacement of the emergency water cooling circuit; improvement of protection against sodium fire by partitioning the secondary sodium circuit in the steam generator building, reinforcement of steam generator casing, and installation of an antiwhip system on the high-pressure steam pipes; replacement of hot parts of the 321 stainless steel secondary loops and steam generator modules, affected by delayed reheat cracking; special inspections of the reactor internal structures to demonstrate their good condition. An extensive plant requalification program was carried out following the renovation work, and the plant resumed power operation in June 2003. Six operating cycles are planned, representing a total irradiation time of 720 EFPD equivalent to [approximately]5.5 yr of operation.