ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Iraci Martinez Gonçalves, Daniel K. S. Ting, Paulo Brasko Ferreira, Belle R. Upadhyaya
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 101-109
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT05-A3582
Articles are hosted by Taylor and Francis Online.
This paper presents a reactor-monitoring algorithm using the group method of data handling (GMDH) that creates nonlinear algebraic models for system characterization. The monitoring system was applied to the IEA-R1 experimental reactor at the Instituto de Pesquisas Energéticas e Nucleares (IPEN). The IEA-R1 is a 5-MW pool-type research reactor that uses light water as coolant and moderator and graphite as reflector. The GMDH provides a general framework for characterizing the relationships among a set of state variables of a process system and is used for generating estimates of critical variables in an optimal data-driven model form. The monitoring system developed in this work was used to predict the IEA-R1 reactor environment, using nuclear power, rod position, and coolant temperatures, by combining two variables at a time. The results obtained using the GMDH models agreed very well with the dose rate measurements, with prediction errors of less than 5%. The error was minimal when the dose rate prediction was made using reactor power and coolant temperature.