ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fluor to serve as EPC contractor for Centrus’s Piketon plant expansion
The HALEU cascade at the American Centrifuge Plant in Piketon, Ohio. (Photo: Centrus Energy)
American Centrifuge Operating, a subsidiary of Centrus Energy Corp., has formed a multiyear strategic collaboration with Fluor Corporation in which Fluor will serve as the engineering, procurement, and construction (EPC) contractor for Centrus’s expansion of its uranium enrichment facility in Piketon, Ohio. Fluor will lead the engineering and design aspects of the American Centrifuge Plant’s expansion, manage the supply chain and procurement of key materials and services, oversee construction at the site, and support the commissioning of new capacity.
Ser Gi Hong, Ehud Greenspan, Yeong Il Kim
Nuclear Technology | Volume 149 | Number 1 | January 2005 | Pages 22-48
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT05-A3577
Articles are hosted by Taylor and Francis Online.
A once-for-life, uniform composition, blanket-free and fuel-shuffling-free reference core has been designed for the Encapsulated Nuclear Heat Source (ENHS) to provide the design goals of a nearly zero burnup reactivity swing throughout ~20 yr of full-power operation up to the peak discharge burnup of more than 100 GWd/t HM. What limits the core life is radiation damage to the HT-9 structural material. The temperature coefficients of reactivity are all negative, except for that of the coolant expansion. However, the negative reactivity coefficient associated with the radial expansion of the core structure can compensate for the coolant thermal expansion. The void coefficient is positive but of no safety concern because the boiling temperature of lead or lead-bismuth is so high that there is no conceivable mechanism for the introduction of significant void fraction into the core. The core reactivity coefficients, reactivity worth, and power distributions are almost constant throughout the core life.It was found possible to design such once-for-life cores using different qualities of Pu and transuranics as long as U is used as the primary fertile material. It is also feasible to design ENHS cores using nitride rather than metallic fuel. Relative to the reference metallic fuel core, nitride fuel cores offer up to ~25% higher discharge burnup and longer life, up to ~38% more energy per core, a significantly more negative Doppler reactivity coefficient, and less positive coolant expansion and coolant void reactivity coefficient but a somewhat smaller negative fuel expansion reactivity coefficient. The pitch-to-diameter ratio (1.45 of the nitride fuel cores using enriched N) is larger than that (1.36) for the reference metallic fuel core, implying a reduction of the coolant friction loss, thus enabling an increase in the power level that can be removed from the core by natural circulation cooling.It is also possible to design Pu-U(10Zr) fueled ENHS-type cores using Na as the primary coolant with either Na or Pb-Bi secondary coolants. The Na-cooled cores feature a tighter lattice and are therefore more compact but have spikier power distribution, more positive coolant temperature reactivity coefficients, and smaller reactivity worth of the control elements.