ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Canada’s General Fusion to become publicly traded company
General Fusion has entered into a definitive business combination agreement with Spring Valley Acquisition Corp. (SVAC) that would make General Fusion the first publicly traded pure-play fusion firm, the company announced on January 22. The business combination is projected to be completed in mid-2026.
Yuichi Sano, Yoshihiko Shinoda, Masaki Ozawa
Nuclear Technology | Volume 148 | Number 3 | December 2004 | Pages 348-357
Technical Paper | Reprocessing | doi.org/10.13182/NT04-A3572
Articles are hosted by Taylor and Francis Online.
Based on state-of-the-art separation chemistry, extended recycling of rare-metal fission products (RMFPs) from fast breeder reactors is examined as a new strategy for spent fuel reprocessing. Fission product fractionation is in accordance with the modern trend toward zero emission of toxic materials; salt-free separation utilizing in situ electrochemistry will suit the current direction of research and development in the back end of the nuclear fuel cycle. A catalytic electrolytic extraction and dissolution method, which would avoid secondary waste arising, was proposed to separate the target, the radioactive but potentially strategic elements Pd, Ru, Rh, Tc, Te, and Se, dissolved in high-level liquid waste (HLLW). It was confirmed that RMFPs could be recovered essentially from simulated HLLW with the conceptual scheme, although further studies for the optimization were required to obtain higher recovery ratios of RMFPs. Elemental separation not only offers alternative material resources to meet expanding demands for catalysts in fuel cell/hydrogen energy systems but is also the first step for transmutation or other selective strategies for waste management of long-lived fission products.