ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Sellafield awards $3.86B in infrastructure contracts to three companies
Sellafield Ltd., the site license company overseeing the decommissioning of the U.K.’s Sellafield nuclear site in Cumbria, England, announced the award of £2.9 billion (about $3.86 billion) in infrastructure support contracts to the companies of Morgan Sindall Infrastructure, Costain, and HOCHTIEF (UK) Construction.
Sang-Yong Lee, Chang-Hwan Ban
Nuclear Technology | Volume 148 | Number 3 | December 2004 | Pages 335-347
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT04-A3571
Articles are hosted by Taylor and Francis Online.
Several researchers have endeavored to develop methodologies to extrapolate the uncertainties gathered from reduced-size facilities to the full-size nuclear power plant. They are all based on the general guideline of the code scaling, applicability, and uncertainty (CSAU) method. Although there is an extensive compilation of experimental and theoretical databases and a detailed guide about the best-estimate calculation of loss-of-coolant accidents, these applications are dissimilar to each other. The absence of a procedure to implement the requirement of direct data comparison with integral- and separate-effects tests in determining the code uncertainty is the main cause of the differences. To overcome this problem, a code-accuracy-based uncertainty estimation (CABUE) technique has been developed, in which the code accuracy becomes the measure of the selection of code parameters and the determination of the ranges of them. An application of this technique to a Westinghouse three-loop nuclear power plant has been successfully performed.