ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
T. Fei, M. J. Driscoll, E. Shwageraus
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 378-389
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-21
Articles are hosted by Taylor and Francis Online.
The purpose of this study was to demonstrate the neutronic feasibility and competitive fuel cycle economics of sodium fast reactors operating with uranium metal (UZr) fuel on a once-through fuel cycle. Uranium startup fast reactors (USFRs) decouple their deployment from that of expensive reprocessing and recycle facilities. This could facilitate and speed up the deployment of conventional fast reactors, which, in their traditional designs, heavily depend on the availability of reprocessing facilities for transuranic fuel production. The uranium requirement and fuel cycle cost of studied USFR core designs are calculated to be comparable to those of typical light water reactors. The main design constraint is the fast neutron fluence imposed on the cladding material, which is required to be below 5.0×1023 n/cm2 even for advanced oxide dispersion strengthened steels. Therefore, moderators need to be inserted in the fuel assemblies to lower the fast neutron flux so that the fuel residence time limited by neutron fluence can be extended to match the reactivity limited fuel residence time. In this study, magnesium oxide is used for reflectors as well as for the moderator.