ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
T. Fei, M. J. Driscoll, E. Shwageraus
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 378-389
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-21
Articles are hosted by Taylor and Francis Online.
The purpose of this study was to demonstrate the neutronic feasibility and competitive fuel cycle economics of sodium fast reactors operating with uranium metal (UZr) fuel on a once-through fuel cycle. Uranium startup fast reactors (USFRs) decouple their deployment from that of expensive reprocessing and recycle facilities. This could facilitate and speed up the deployment of conventional fast reactors, which, in their traditional designs, heavily depend on the availability of reprocessing facilities for transuranic fuel production. The uranium requirement and fuel cycle cost of studied USFR core designs are calculated to be comparable to those of typical light water reactors. The main design constraint is the fast neutron fluence imposed on the cladding material, which is required to be below 5.0×1023 n/cm2 even for advanced oxide dispersion strengthened steels. Therefore, moderators need to be inserted in the fuel assemblies to lower the fast neutron flux so that the fuel residence time limited by neutron fluence can be extended to match the reactivity limited fuel residence time. In this study, magnesium oxide is used for reflectors as well as for the moderator.