ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Blair P. Bromley, Bronwyn Hyland
Nuclear Technology | Volume 186 | Number 3 | June 2014 | Pages 317-339
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-85
Articles are hosted by Taylor and Francis Online.
New reactor concepts to implement thorium-based fuel cycles have been explored to achieve maximum resource utilization. Pressure tube heavy water reactors (PT-HWRs) are highly advantageous for implementing thorium-based fuels because of their high neutron economy and online refueling capability. The use of heterogeneous seed/blanket core concepts in a PT-HWR where higher-fissile-content seed fuel bundles are physically separate from lower-fissile-content blanket bundles allows more flexibility and control in fuel management to maximize fissile utilization (FU) and conversion of fertile fuel. The lattice concept chosen was a 35-element bundle made with a homogeneous mixture of reactor-grade PuO2 (∼67 wt% fissile) and ThO2, with a central zirconia rod to reduce coolant void reactivity. Several annular and checkerboard-type heterogeneous seed/blanket core concepts with plutonium-thorium–based fuels in a 700-MW(electric)–class PT-HWR were analyzed, using a once-through thorium cycle. Different combinations of seed and blanket fuel were tested to determine the impact on core-average burnup, FU, power distributions, and other performance parameters. WIMS-AECL Version 3.1 was used to perform lattice physics calculations using two-dimensional, 89-group integral neutron transport theory, while RFSP Version 3.5.1 was used to perform the core physics and fuel management calculations using three-dimensional two-group diffusion theory. Among the different core concepts investigated, there were cores where the FU was up to 30% higher than that achieved in a PT-HWR using natural uranium fuel bundles. There were cores where up to 67% of the Pu was consumed, cores where up to 43% of the energy was produced from thorium, and cores where up to 363 kg/year of 233U was produced in the discharged fuel.