ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
A series of firsts delivers new Plant Vogtle units
Southern Nuclear was first when no one wanted to be.
The nuclear subsidiary of the century-old utility Southern Company, based in Atlanta, Ga., joined a pack of nuclear companies in the early 2000s—during what was then dubbed a “nuclear renaissance”—bullish on plans for new large nuclear facilities and adding thousands of new carbon-free megawatts to the grid.
In 2008, Southern Nuclear applied for a combined construction and operating license (COL), positioning the company to receive the first such license from the U.S. Nuclear Regulatory Commission in 2012. Also in 2008, Southern became the first U.S. company to sign an engineering, procurement, and construction contract for a Generation III+ reactor. Southern chose Westinghouse’s AP1000 pressurized water reactor, which was certified by the NRC in December 2011.
Fast forward a dozen years—which saw dozens of setbacks and hundreds of successes—and Southern Nuclear and its stakeholders celebrated the completion of Vogtle Units 3 and 4: the first new commercial nuclear power construction project completed in the U.S. in more than 30 years.
Hiroaki Suzuki, Masanori Naitoh, Atsuo Takahashi, Marco Pellegrini, Hidetoshi Okada
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 255-262
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-42
Articles are hosted by Taylor and Francis Online.
The Great East Japan Earthquake and tsunami on March 11, 2011, mark the start of the nuclear accident at the Fukushima Daiichi nuclear power plant. Progression of the accident has been analyzed with the SAMPSON code. SAMPSON was originally designed as a large-scale simulation system with the maximum use of mechanistic models and theoretically based equations. In the progression analysis done for Unit 2, SAMPSON could reproduce the pressure transient of the reactor pressure vessel (RPV) reasonably well by assuming partial load operation of the reactor core isolation cooling system (RCIC). The pressure transient of the primary containment vessel was reproduced reasonably well by assuming torus room flooding. After the RCIC trip and manual opening of the steam relief valve, SAMPSON predicted the damage to the upper part of the fuel assemblies near the core center and RPV failure due to creep rupture. More than 91 wt% of the core debris relocated to the lower plenum was as particles, and the major constituents were UO2, Zr, and ZrO2 by SAMPSON analysis.