ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Hiroaki Suzuki, Masanori Naitoh, Atsuo Takahashi, Marco Pellegrini, Hidetoshi Okada
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 255-262
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-42
Articles are hosted by Taylor and Francis Online.
The Great East Japan Earthquake and tsunami on March 11, 2011, mark the start of the nuclear accident at the Fukushima Daiichi nuclear power plant. Progression of the accident has been analyzed with the SAMPSON code. SAMPSON was originally designed as a large-scale simulation system with the maximum use of mechanistic models and theoretically based equations. In the progression analysis done for Unit 2, SAMPSON could reproduce the pressure transient of the reactor pressure vessel (RPV) reasonably well by assuming partial load operation of the reactor core isolation cooling system (RCIC). The pressure transient of the primary containment vessel was reproduced reasonably well by assuming torus room flooding. After the RCIC trip and manual opening of the steam relief valve, SAMPSON predicted the damage to the upper part of the fuel assemblies near the core center and RPV failure due to creep rupture. More than 91 wt% of the core debris relocated to the lower plenum was as particles, and the major constituents were UO2, Zr, and ZrO2 by SAMPSON analysis.