ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Hiroaki Suzuki, Masanori Naitoh, Atsuo Takahashi, Marco Pellegrini, Hidetoshi Okada
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 255-262
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-42
Articles are hosted by Taylor and Francis Online.
The Great East Japan Earthquake and tsunami on March 11, 2011, mark the start of the nuclear accident at the Fukushima Daiichi nuclear power plant. Progression of the accident has been analyzed with the SAMPSON code. SAMPSON was originally designed as a large-scale simulation system with the maximum use of mechanistic models and theoretically based equations. In the progression analysis done for Unit 2, SAMPSON could reproduce the pressure transient of the reactor pressure vessel (RPV) reasonably well by assuming partial load operation of the reactor core isolation cooling system (RCIC). The pressure transient of the primary containment vessel was reproduced reasonably well by assuming torus room flooding. After the RCIC trip and manual opening of the steam relief valve, SAMPSON predicted the damage to the upper part of the fuel assemblies near the core center and RPV failure due to creep rupture. More than 91 wt% of the core debris relocated to the lower plenum was as particles, and the major constituents were UO2, Zr, and ZrO2 by SAMPSON analysis.