ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Marco Pellegrini, Hiroaki Suzuki, Hideo Mizouchi, Masanori Naitoh
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 241-254
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-107
Articles are hosted by Taylor and Francis Online.
Because of the high-magnitude earthquake and consequent tsunami that struck the east coast of Japan on March 11, 2011, at 14:46, Tokyo Electric Power Company's Fukushima Daiichi nuclear power plant experienced station blackout (SBO) resulting in a nuclear accident unprecedented in time and extent. Simulation of such an accident by means of computer codes is largely dependent on the applied boundary conditions and physical models. However, still-unknown boundary conditions and unclear phenomena result in uncertain computed quantities. In this study, first, the boundary conditions of emergency systems are theoretically derived, starting from a discussion of the reactor available measured quantities and related uncertainties. Then, newly implemented physical models (e.g., wetwell condensation mechanism), which were not accounted for in historical studies of long-term SBOs, are explained. As an early method for accident clarification and explanation regarding effective boundary conditions, results from the SAMPSON severe accident code were compared with theoretical values. The results of SAMPSON compared with the measured quantities available have shown that despite successful safety operations performed by the plant operators in Fukushima Daiichi Unit 3, the eventual lack of batteries (for systems operation and measurement reading) led to plant conditions of low core water level at high pressure, nullifying the attempt of the subsequent alternative water injection to prevent core degradation.