ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Kevin R. Robb, Matthew W. Francis, Larry J. Ott
Nuclear Technology | Volume 186 | Number 2 | May 2014 | Pages 145-160
Technical Paper | Reactor Safety | doi.org/10.13182/NT13-43
Articles are hosted by Taylor and Francis Online.
During the emergency response period of the accidents that took place at the Fukushima Daiichi nuclear power plant (NPP) in March of 2011, researchers at Oak Ridge National Laboratory (ORNL) conducted a number of studies using the MELCOR code to help understand what was occurring and what had occurred. During the postaccident period, the U.S. Department of Energy (DOE) and the U.S. Nuclear Regulatory Commission (NRC) jointly sponsored a study of the Fukushima Daiichi NPP accident with collaboration among ORNL, Sandia National Laboratories, and Idaho National Laboratory. The purpose of the study was to compile relevant data, reconstruct the accident progression using computer codes, assess the codes' predictive capabilities, and identify future data needs. The current paper summarizes some of the early MELCOR simulations and analyses conducted at ORNL of the Fukushima Daiichi NPP Unit 3 (1F3) accident. Extended analysis and discussion of the 1F3 accident are also presented taking into account new knowledge and modeling refinements made since the joint DOE-NRC study.