ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Sophie Grape, Staffan Jacobsson Svärd, Bo Lindberg
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 90-98
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-12
Articles are hosted by Taylor and Francis Online.
This paper describes possible ways of analyzing and interpreting data obtained using the digital Cherenkov viewing device on spent nuclear fuel assemblies for the identification of partial defects in the fuel. According to the terminology of the International Atomic Energy Agency, partial defects refer to items, for instance, fuel assemblies, that are manipulated to the extent that a fraction of the fuel material is diverted or substituted. Analysis can be performed either by using a measure of the total light intensity or by identifying the light distribution pattern emanating from the spent nuclear fuel, the goal of either type of analysis being a quantitative measure that can be used in the data interpretation step. Two possible data interpretation alternatives are presented here: the threshold method and the hypothesis testing method. This paper summarizes some of the simulation studies and results that have been obtained, related to the two analysis and data interpretation methodologies.