ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
NRC begins special inspection at Constellation’s Quad Cities plant
The Nuclear Regulatory Commission is conducting a special inspection at Constellation’s Quad Cities nuclear plant to review two events caused by battery issues. Neither event had any impact on public health or plant workers.
Ross Hays, Paul Turinsky
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 76-89
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-68
Articles are hosted by Taylor and Francis Online.
The process of transitioning from the current once-through nuclear fuel cycle to a hypothetical closed fuel cycle necessarily introduces a much greater degree of supply feedback and complexity. When considering such advanced technologies, it is necessary to consider when and how fuel cycle facilities can be deployed in order to avoid resource conflicts while maximizing certain stakeholder values. A multiobjective optimization capability was developed around the VISION nuclear fuel cycle simulation code to allow for the automated determination of optimum deployment scenarios and objective trade-off surfaces for dynamic fuel cycle transition scenarios. A parallel simulated annealing optimization framework with modular objective function definitions is utilized to maximize computational power and flexibility. Three sample objective functions representing a range of economic and sustainability goals are presented, as well as representative optimization results demonstrating both robust convergence toward a set of optimum deployment configurations and a consistent set of trade-off surfaces.