ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Ross Hays, Paul Turinsky
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 76-89
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-68
Articles are hosted by Taylor and Francis Online.
The process of transitioning from the current once-through nuclear fuel cycle to a hypothetical closed fuel cycle necessarily introduces a much greater degree of supply feedback and complexity. When considering such advanced technologies, it is necessary to consider when and how fuel cycle facilities can be deployed in order to avoid resource conflicts while maximizing certain stakeholder values. A multiobjective optimization capability was developed around the VISION nuclear fuel cycle simulation code to allow for the automated determination of optimum deployment scenarios and objective trade-off surfaces for dynamic fuel cycle transition scenarios. A parallel simulated annealing optimization framework with modular objective function definitions is utilized to maximize computational power and flexibility. Three sample objective functions representing a range of economic and sustainability goals are presented, as well as representative optimization results demonstrating both robust convergence toward a set of optimum deployment configurations and a consistent set of trade-off surfaces.