ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Cole Gentry, Ivan Maldonado, Andrew Godfrey, Kurt Terrani, Jess Gehin, Jeffrey Powers
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 60-75
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-75
Articles are hosted by Taylor and Francis Online.
An investigation of the utilization of TRistructural-ISOtropic (TRISO)-coated fuel particles for the burning of plutonium/neptunium (Pu/Np) isotopes in typical Westinghouse four-loop pressurized water reactors is presented. Though numerous studies have evaluated the burning of transuranic isotopes in light water reactors (LWRs), this work differentiates itself by employing Pu/Np-loaded TRISO particles embedded within a silicon carbide (SiC) matrix and formed into pellets, constituting the fully ceramic microencapsulated (FCM) fuel concept that can be loaded into standard LWR fuel element cladding. This approach provides the capability of Pu/Np burning and, by virtue of the multibarrier TRISO particle design and SiC matrix properties, will allow for greater burnup of Pu/Np material, plus improved fuel reliability and thermal performance. In this study, a variety of heterogeneous assembly layouts, which utilize a mix of FCM rods and typical UO2 rods, and core loading patterns were analyzed to demonstrate the neutronic feasibility of Pu/Np-loaded TRISO fuel. The assembly and core designs herein reported are not fully optimized and require fine-tuning to flatten power peaks; however, the progress achieved thus far strongly supports the conclusion that with further rod/assembly/core loading and placement optimization, Pu/Np-loaded TRISO fuel and core designs that are capable of balancing Pu/Np production and destruction can be designed within the standard constraints for thermal and reactivity performance in pressurized water reactors.