ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
NASA, DOE solidify collaboration on a lunar surface reactor
NASA and the Department of Energy have announced a “renewed commitment” to their mutual goal of supporting research and development for a nuclear fission reactor on the lunar surface to provide power for future missions. The agencies have signed a memorandum of understanding that “solidifies this collaboration and advances President Trump’s vision of American space superiority.”
Blair P. Bromley
Nuclear Technology | Volume 186 | Number 1 | April 2014 | Pages 17-32
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-86
Articles are hosted by Taylor and Francis Online.
New fuel bundle and lattice concepts to implement thorium-based fuel cycles in pressure tube heavy water reactors (PT-HWRs) have been explored to achieve maximum resource utilization. As an existing, operational technology, PT-HWRs are highly advantageous for implementing the use of thorium-based fuel cycles because of their high neutron economy and online refueling capability. A PT-HWR is flexible in that it can use one, two, or more different types of fuels in either homogeneous or heterogeneous cores to optimize power production, fuel burnup, and new fissile fuel production. In a heterogeneous PT-HWR core, higher fissile content seed fuel will be optimized for power and excess neutron production, and lower fissile content blanket fuel will be optimized for production of 233U. Five different lattice concepts were investigated for potential use in a once-through thorium cycle in a PT-HWR. The lattices involved 43-, 35-, and 21-element bundles with a central cluster of ThO2 pins, or a Zircaloy-4 (Zr-4) central displacer tube containing either stagnant D2O coolant or solid ZrO2, to help reduce coolant void reactivity (CVR). The fuel in the outer pins is a homogeneous mixture of Th and low-enriched uranium (LEU) (~5 wt% 235U/U) or reactor-grade Pu (~67 wt% fissile). The content of the LEU or Pu was varied to achieve different levels of burnup, and it is presumed that low-reactivity fuel would be used as blanket bundles. It was found that the various lattice concepts could achieve burnups ranging from ~10 to 80 MWd/kg and that the fissile utilization could be up to 60% to 100% higher than what is currently achieved in a PT-HWR using natural uranium fuel. Burnup-averaged CVR ranges from approximately +1 to +16 mk (1 mk = 100 pcm = 0.001Δk/k), depending on lattice type and fuel composition. Assuming a maximum linear element rating of ~50 kW/m, the maximum permissible bundle power ranges from ~520 to 800 kW.