ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
Katsuyuki Kawashima, Kazuteru Sugino, Shigeo Ohki, Tsutomu Okubo
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 270-280
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-38
Articles are hosted by Taylor and Francis Online.
As part of the Fast Reactor Cycle Technology Development (FaCT) Project, JSFR (Japan Sodium-Cooled Fast Reactor) core design efforts have been made to cope with the transuranic (TRU) fuel compositions expected during the light water reactor (LWR)–to–fast breeder reactor transition period, during which various kinds of TRU fuel compositions are available depending on the characteristics of the LWR spent fuels and their recycling method. The sodium void reactivity, which is one of the major core safety parameters, is considerably influenced by TRU fuel compositions. The criteria assigned to the JSFR core include a void reactivity effect limited to ∼6 $; therefore, designing a core with reduced sodium void reactivity will offer a greater margin for the core to host TRU fuel. To this end, a new core concept called BUMPY is proposed. This homogeneous core exhibits a low sodium void reactivity, due to partial-length fuels with an upper sodium plenum interspersed within the core, among other standard fuel assemblies. This core configuration enhances the upward and lateral neutron leakage from the core fuel region toward the sodium plenum when voiding to reduce void reactivity. The BUMPY core is applied to the 750-MW(electric) JSFR core design. The core can meet the design target by adjusting the loading fraction of the partial-length fuels and the height of the step in fuel lengths. The calculated void reactivity of the selected BUMPY core is 2.5 $ (25% loading fraction, 30-cm step height), which is considerably reduced from the 5.3 $ value of the reference core. This allows the BUMPY core to accommodate 5% to 9% more minor actinides in the core compared to the reference core.