ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Peiwei Sun, Jin Jiang, Kai Wang
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 239-258
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-130
Articles are hosted by Taylor and Francis Online.
The Canadian supercritical water-cooled reactor (SCWR) can be modeled as a multiple-input multiple-output system. It has a high power-to-flow ratio, strong cross coupling, and a high degree of nonlinearity in its dynamic characteristics. Because of the existence of strong cross coupling among system inputs and outputs, it is difficult for a traditional control system design methodology to produce a satisfactory control system. In this paper, the direct Nyquist array method is used first to decouple the system into a diagonally dominant form via a precompensator. After decoupling the system successfully, three single-input single-output dynamic compensators are synthesized in the frequency domain. By using the precompensator, the temperature variation because of disturbances at the reactor power and pressure is significantly reduced. The control system can effectively maintain the overall system stability and regulate the plant around a specified operating condition. To deal with the nonlinearities, a control strategy based on gain scheduling is adopted. Different sets of controllers are used for the plant at different load conditions. The proposed control strategies have been evaluated under various operating scenarios. The robustness of the controller with respect to operating condition changes is also investigated. It is shown that the decoupling control can effectively reduce the cross coupling inherent in the Canadian SCWR, and gain scheduling control can successfully achieve satisfactory performance for different operating conditions.