ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
INL’s new innovation incubator could link start-ups with an industry sponsor
Idaho National Laboratory is looking for a sponsor to invest $5 million–$10 million in a privately funded innovation incubator to support seed-stage start-ups working in nuclear energy, integrated energy systems, cybersecurity, or advanced materials. For their investment, the sponsor gets access to what INL calls “a turnkey source of cutting-edge American innovation.” Not only are technologies supported by the program “substantially de-risked” by going through technical review and development at a national laboratory, but the arrangement “adds credibility, goodwill, and visibility to the private sector sponsor’s investments,” according to INL.
Peiwei Sun, Jin Jiang, Kai Wang
Nuclear Technology | Volume 185 | Number 3 | March 2014 | Pages 239-258
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-130
Articles are hosted by Taylor and Francis Online.
The Canadian supercritical water-cooled reactor (SCWR) can be modeled as a multiple-input multiple-output system. It has a high power-to-flow ratio, strong cross coupling, and a high degree of nonlinearity in its dynamic characteristics. Because of the existence of strong cross coupling among system inputs and outputs, it is difficult for a traditional control system design methodology to produce a satisfactory control system. In this paper, the direct Nyquist array method is used first to decouple the system into a diagonally dominant form via a precompensator. After decoupling the system successfully, three single-input single-output dynamic compensators are synthesized in the frequency domain. By using the precompensator, the temperature variation because of disturbances at the reactor power and pressure is significantly reduced. The control system can effectively maintain the overall system stability and regulate the plant around a specified operating condition. To deal with the nonlinearities, a control strategy based on gain scheduling is adopted. Different sets of controllers are used for the plant at different load conditions. The proposed control strategies have been evaluated under various operating scenarios. The robustness of the controller with respect to operating condition changes is also investigated. It is shown that the decoupling control can effectively reduce the cross coupling inherent in the Canadian SCWR, and gain scheduling control can successfully achieve satisfactory performance for different operating conditions.