ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Project Omega emerges from stealth mode with plans to recycle U.S. spent fuel
Nuclear technology start-up Project Omega announced on February 11 that it has emerged from stealth mode with hopes of processing and recycling spent nuclear fuel into “long-duration, high-density power sources and critical materials for the nuclear industry.”
D. F. Da Cruz, D. Rochman, A. J. Koning
Nuclear Technology | Volume 185 | Number 2 | February 2014 | Pages 174-191
Technical Paper | Fuel Cycle And Management | doi.org/10.13182/NT12-154
Articles are hosted by Taylor and Francis Online.
Uncertainty analysis on reactivity and discharged inventory for a typical pressurized water reactor fuel element as a result of uncertainties in 235,238U, 239,240,241Pu, and fission products nuclear data was performed. A typical Westinghouse three-loop fuel assembly fueled with UO2 fuel with 4.8% enrichment was selected. The Total Monte Carlo method was applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study are from the JEFF3.1 evaluation, with the exception of the nuclear data files for U, Pu, and fission products isotopes (randomized for the generation of the various DRAGON libraries). These are taken from the TALYS evaluated nuclear data library TENDL-2012. Results show that the calculated total uncertainty in keff (as a result of uncertainties in nuclear data of the considered isotopes) is virtually independent of fuel burnup, and amounts to 700 pcm. The uncertainties in the inventory of the discharged fuel are dependent on the element considered and lie in the range 1% to 15% for most fission products, and are <5% for the most important actinides. The total uncertainty on the reactor parameters was also split into different components (different nuclear reaction channels), and the main sources of uncertainties were identified.