ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Industry Update—May 2025
Here is a recap of industry happenings from the recent past:
TerraPower’s Natrium reactor advances on several fronts
TerraPower has continued making aggressive progress in several areas for its under-construction Natrium Reactor Demonstration Project since the beginning of the year. Natrium is an advanced 345-MWe reactor that has liquid sodium as a coolant, improved fuel utilization, enhanced safety features, and an integrated energy storage system, allowing for a brief power output boost to 500-MWe if needed for grid resiliency. The company broke ground for its first Natrium plant in 2024 near a retiring coal plant in Kemmerer, Wyo.
Marco Cigarini, Mario Dalle Donne
Nuclear Technology | Volume 80 | Number 1 | January 1988 | Pages 107-132
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A35553
Articles are hosted by Taylor and Francis Online.
A parametric thermohydraulic study for an advanced pressurized water reactor (APWR) with a tight fuel rod lattice has been performed. The APWR improves uranium utilization. It has been assumed that the APWR core should be placed in a modern German pressurized water reactor (PWR) plant. Within this study ∼200 different reactors have been calculated. The tightening of the fuel rod lattice implies a decrease of the net electrical output of the plant. APWR cores mean higher core pressure drops and higher water velocities in the core region. The cores tend to be shorter and the number of fuel rods higher than for the PWR. In the range of interest, homogeneous and heterogeneous reactors are about equivalent (same net electrical output of the plant for the same ratio between water and fuel rod volume). For homogeneous reactors the optimum designs are for H/d = 20 (H= axial pitch of the integral spiral ribs on fuel rod surface, d = diameter of the fuel rod) and for heterogeneous reactors for H/d = 35.