ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
Jeff Place on INPO’s strategy for industry growth
As executive vice president for industry strategy at the Institute of Nuclear Power Operations, Jeff Place leads INPO’s industry-facing work, engaging directly with chief nuclear officers.
Hans Märkl, Claus A. Goetzmann, Helmut Moldaschl
Nuclear Technology | Volume 80 | Number 1 | January 1988 | Pages 65-72
Technical Paper | Advanced Light Water Reactor / Fission Reactor | doi.org/10.13182/NT88-A35549
Articles are hosted by Taylor and Francis Online.
The commercial success of current pressurized water reactor (PWR) nuclear power stations is the seed for research and development (R&D) work to carry this technology even further. Among the goals for future plants, significant improvement of fuel utilization is clearly prominent. There are various means for accomplishing this task. All basically concern the modification of the spectral conditions in the reactor core, with hardening being the most promising on theoretical grounds. Several studies based on investigations in physics, thermohydraulics, emergency core cooling, and mechanical design indicate that it should be possible to introduce systems with moderator-to-fuel volumetric ratios in the range of 0.5 to 1.0, drawing to the largest extent possible on the proven technology available. The Kraftwerk Union AG high conversion reactor represents a quasi-standard PWR with fuel assemblies of more or less uniformly enriched fuel rods, arranged in a tight hexagonal array with a pitch-to-diameter ratio p/d ≅ 1.12. High fuel enrichment as well as a high conversion ratio of ∼0.9 will provide the potential for high burnup values up to 70 000 MWd/tonne and a low fissile material consumption. The overall objective of the actual R&D program is to have the technical feasibility, including that for licensibility, established by the early 1990s as a prerequisite for deciding whether to enter a demonstration plant program.