ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Alessandra Cesana, Sara Tania Mongelli, Mario Terrani, Pietro Benetti, Elio Calligarich, Rinaldo Dolfini, Gian Luca Raselli
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 97-101
Technical Note | Fuel Cycle and Management | doi.org/10.13182/NT04-A3550
Articles are hosted by Taylor and Francis Online.
Recently, it has been suggested to consider 242mAm as a potential nuclear fuel. This artificial nuclide can be produced through 241Am neutron capture carried on in a neutron field typical of a thermal reactor. In order to suppress the thermal neutron flux, which will cause 242mAm depletion mainly through fission, proper neutron filters should be adopted. In a very intense neutron field, the 242mAm enrichment depends mainly on the energy distribution of the neutrons, the sample thickness, and the cutoff energy of the neutron filter.An investigation on different geometries of the sample to be irradiated using Cd, B, Sm, and Gd as neutron filters has been carried out by means of Monte Carlo simulation. The most favorable results have been obtained irradiating thin 241Am samples (11 g/cm2) covered with a Gd (0.2-mm-thick) or Sm (1-mm-thick) filter. In these cases the theoretical 242mAm enrichment can reach 20%.The preparation of significant quantities of this unconventional nuclear fuel implies isotopic separation techniques operating in high radioactive environments and hopefully characterized by very high recovery factors, which are in no way trivial problems.