ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Jing Wang, Ronald G. Ballinger, Heather J. Maclean
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 68-96
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT04-A3549
Articles are hosted by Taylor and Francis Online.
An integrated fuel performance model for coated particle fuel has been developed to comprehensively study the behavior of TRISO-coated fuel. Modeling of both pebble-bed and prismatic configurations is possible. In the case of the pebble-bed concept, refueling of pebbles is simulated to account for the nonuniform environment in the reactor core and history-dependent particle behavior. Monte Carlo sampling of particles is employed in fuel failure prediction to capture the statistical features of dimensions; material properties; and, in the case of the pebble-bed concept, the statistical nature of the refueling process. An advanced fuel failure model has been developed based on a probabilistic fracture mechanics approach. The mechanical analysis includes effects of anisotropic irradiation-induced dimensional changes and isotropic irradiation-induced creep, and the fluence-dependent Poisson ratio in irradiation creep. The stress analysis is benchmarked against the calculations of Japanese High Temperature Test Reactor (HTTR) first-loading fuel and finite element result on one case performed by the Idaho National Engineering and Environmental Laboratory. The failure model predictions are compared with NPR1, NPR2, and NPR1A capsule irradiation data. The model results compare very favorably with postirradiation examination results both in terms of failure probability, number of failed particles, and Kr85m R/B evolution during irradiation.