ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Wright officially sworn in for third term at the NRC
The Nuclear Regulatory Commission recently announced that David Wright, after being nominated by President Trump and confirmed by the Senate, was ceremonially sworn in as NRC chair on September 8.
This swearing in comes more than a month after Wright began his third term on the commission; he began leading as chair July 31. His term will conclude on June 30, 2030.
Jing Wang, Ronald G. Ballinger, Heather J. Maclean
Nuclear Technology | Volume 148 | Number 1 | October 2004 | Pages 68-96
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT04-A3549
Articles are hosted by Taylor and Francis Online.
An integrated fuel performance model for coated particle fuel has been developed to comprehensively study the behavior of TRISO-coated fuel. Modeling of both pebble-bed and prismatic configurations is possible. In the case of the pebble-bed concept, refueling of pebbles is simulated to account for the nonuniform environment in the reactor core and history-dependent particle behavior. Monte Carlo sampling of particles is employed in fuel failure prediction to capture the statistical features of dimensions; material properties; and, in the case of the pebble-bed concept, the statistical nature of the refueling process. An advanced fuel failure model has been developed based on a probabilistic fracture mechanics approach. The mechanical analysis includes effects of anisotropic irradiation-induced dimensional changes and isotropic irradiation-induced creep, and the fluence-dependent Poisson ratio in irradiation creep. The stress analysis is benchmarked against the calculations of Japanese High Temperature Test Reactor (HTTR) first-loading fuel and finite element result on one case performed by the Idaho National Engineering and Environmental Laboratory. The failure model predictions are compared with NPR1, NPR2, and NPR1A capsule irradiation data. The model results compare very favorably with postirradiation examination results both in terms of failure probability, number of failed particles, and Kr85m R/B evolution during irradiation.