ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Ola Thomson, Ninos S. Garis,†, Imre Pázsit
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 71-80
Technical Paper | Reactor Operation | doi.org/10.13182/NT97-A35432
Articles are hosted by Taylor and Francis Online.
Detecting the vibration and impacting of neutron detectors in boiling water reactor cores is usually attempted from the detector signals. Two such indicators used or suggested earlier are the widening of the vibration peak in the detector noise auto-power spectral density and the deviation from Gaussian ( = “distortion”) of the signal amplitude probability distribution (APD). Quantification of both methods is hindered by the presence of a strong, Gaussian background; thus, it was thought that band-pass filtering around the vibration peak would improve the performance of the methods. This suggestion has been investigated. It turns out that filtering reduces the background, but it also distorts the vibration component of the signal. For good performance, this latter effect must be compensated for. Such methods are elaborated and applied to both peak widening and APD distortion techniques. It was found that application of such techniques makes the kurtosis and the decay ratio associated with the signal suitable to be used as quantitative indicators of impacting. The methods elaborated were also checked by numerical simulations and real measurements with positive results.