ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Samim Anghaie, Zhongtao Ding
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 57-70
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35431
Articles are hosted by Taylor and Francis Online.
A thermal-hydraulic model is developed to simulate and study the dynamic behavior of bulk evaporation and condensation processes in a multiphase nuclear fuel cell. The phase-change process is driven and controlled by internal heat generation and wall heat removal under constant volume condition. The modeling involves variable gravity conditions that allow for performance analysis of the multiphase nuclear fuel for terrestrial and space applications. A complete set of governing equations for both liquid and vapor phases is developed and numerically solved. The model is used to simulate the operation of a multiphase nuclear fuel cell at zero-gravity and microgravity levels. The temperature and phase distribution, the flow field, and the evolution of the liquid-vapor interface are computed and demonstrated.