ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Carl A. Beard, John J. Buksa, J. Wiley Davidson, Stacey L. Eaton, John J. Park, James W. Toevs, Kenneth A. Werley
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 19-40
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35428
Articles are hosted by Taylor and Francis Online.
The radiation barrier alloy (RBA) concept is a method for introducing radioactive, chemical, and physical barriers for storing weapons-grade plutonium, and yet still allowing for accurate material control and accountability, as well as for retrieving the material by the host nation if desired. The radioactive and chemical barriers are achieved by fabricating the plutonium in the form of a plutonium-beryllium compound (PuBe13), which results in neutron emission resulting from (α,n) reactions within the compound and multiplication from (n,fission) processes in the plutonium. Preliminary physics analyses have been completed, as well as a general review of fabrication techniques and availability of the required materials. These studies revealed that dose levels in excess of 500 rem/h at a 1-m distance from the surface of the RBA assembly can be obtained. However, essential for achieving these dose levels is operation at a high level of neutron multiplication (keff∼0.9). Criticality concerns, even under flooded conditions, can be eliminated through the use of a thermal-neutron-absorbing material (e.g., cadmium) either as a cladding material or a container material surrounding the RBA assembly. Fabrication techniques for the Pu-Be compound are well demonstrated and fully compatible with the RBA assembly fabrication. Data from disassembly of Pu-Be sources indicate that the compound is stable and no significant physical degradation occurs over a 40-yr timeframe. There is no reason to believe that any additional problems exist for longer time frames, given that the components are designed for the appropriate lifetimes (i.e., adequately account for gas production). The materials required for RBA implementation are available in the required quantities, and cost of these materials is not prohibitive. The possible exception is tantalum, although its use is nonessential for RBA performance and hence it will probably be eliminated from future RBA designs. Additional physical barriers can be added by welding the assembly together and encasing the assembly in an outer container. If desired, the assembly (inside the outer container) can also be immersed in a neutronically inert matrix such as lead. The lead serves a dual role in that in makes it difficult to move because of the additional weight, and it increases safety by reducing the possibility of a criticality accident resulting from flooding or assembly crushing. To further the RBA preconceptual analyses, a baseline design based on physics performance was developed. For the baseline RBA configuration, approximately six RBA assemblies, each 31 m3 in volume, would be required to store 50 Mt of weapons-grade plutonium.