ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Borut Mavko, Andrej Prošek, Francesco D’auria
Nuclear Technology | Volume 120 | Number 1 | October 1997 | Pages 1-18
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35427
Articles are hosted by Taylor and Francis Online.
Quantitative evaluation of thermal-hydraulic code uncertainties is a necessary step in the code assessment process, especially if best-estimate codes are utilized for licensing purposes. With the goal of quantifying code accuracy, researchers in the past developed a methodology based on the fast Fourier transform (FFT) that consisted of qualitative and quantitative code assessment. Here, the FFT-based method is applied to International Atomic Energy Agency (IAEA)-Standard Problem Exercise (SPE)-4 test results with pre- and posttest code calculations of the IAEA-SPE-4 experiment. Four system codes (ATHLET, CATHARE, MELCOR, and RELAP5) are used for calculations of the experiment, performed at the PMK-2 facility, which simulated a cold-leg break in a WER-440 plant. The results show that the posttest calculations had better accuracy than did the pretest calculations. None of the best three pre- and posttest calculations were able to predict core dryout, which was the most important phenomenon observed during the test. The results obtained can give an objective indication of the capability of the aforementioned codes in predicting relevant variables characterizing the transient (too few experimental parameters may limit full application of the FFT-based methodology).