ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Illinois lifts moratorium on new large nuclear reactors
New power reactors of any size can be now be sited in the state of Illinois, thanks to legislation signed by Gov. J. B. Pritzker on January 8. The Clean and Reliable Grid Affordability Act (CRGA)—which Pritzker says is designed to lower energy costs for consumers, drive the development of new energy resources in the state, and strengthen the grid—lifts the moratorium on new, large nuclear reactors that Illinois enacted in the late 1980s.
Kevan D. Weaver, Philip E. MacDonald
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 457-469
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-A3542
Articles are hosted by Taylor and Francis Online.
Various methods have been proposed to transmute and thus consume the current inventory of transuranic waste from spent light water reactor (LWR) fuel and plutonium from weapons. We discuss the neutronics performance of nonfertile, fertile metallic, and fertile nitride fuels loaded with 20 to 30 wt% LWR-grade plutonium plus minor actinides and burned in an open-lattice lead-alloy-cooled fast reactor, with an emphasis on the fuel cycle life and spent fuel isotopic content. As a comparison, similar fuel was also studied in a sodium-cooled fast reactor. Our calculations show that the average actinide burn rate for fertile-free fuel is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 1.02 to 1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. In addition, our calculations show that the effective full-power days (EFPDs) of operation (or equivalent reactivity-limited burnup) using fertile fuel can extend beyond 20 yr, and the average actinide burn rate is similar for both the sodium- and lead-bismuth-cooled cases, ranging from 0.5 to 0.9 g/MWd. Using the same parameters (i.e., a large pitch-to-diameter ratio, same linear power, and fissile/fertile loading, etc.), the lead-alloy-cooled cases had an EFPD that was 18% to several times greater than their sodium-cooled counterparts. However, tight sodium-cooled lattices are equivalent to the looser lead-alloy lattices in terms of beginning-of-life excess reactivity.