ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Luis E. Herranz, Virginia Peyrés, Jesús Polo, María J. Escudero, Manuel M. Espigares, José López-Jiménez
Nuclear Technology | Volume 120 | Number 2 | November 1997 | Pages 95-109
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT97-A35419
Articles are hosted by Taylor and Francis Online.
During some pressurized water reactor risk-dominant sequences, most of the radioactivity is discharged at very high velocities into nearly saturated pools. An experimental plan for pool scrubbing and its associated hydrodynamics under representative boundary conditions is carried out in the PECA facility. The retention tests show that a substantial fraction of particle absorption takes place at the pool entrance because of inertial removal mechanisms. This submergence-independent component of the decontamination factor (DF) becomes dominant for small submergences (S ≤ 1.25 m). The behavior of the gas at the pool entrance is investigated experimentally, and a close relation between primary bubble size and inlet gas flow is observed. In addition, the retention tests are modeled with the SPARC90 and BUSCA-AUG92 codes. SPARC90 shows fairly good agreement with the experimental data and indicates the importance of the entrance region in particle absorption. Nonetheless, the approximations and drawbacks of the aerosol removal models used in SPARC90 at the injection zone suggest the need for further separate-effects tests to validate, improve, and/or develop specific models for the entrance region and the need for additional hydrodynamic tests to better describe primary bubble behavior under a jet injection regime.