ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Michael A. Vest, Gerald K. Johnson, R. Dean Pierce, Eugene J. Wesolowski
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 243-252
Technical Note | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35415
Articles are hosted by Taylor and Francis Online.
The operation and design of an inductively heated, bench-scale distillation furnace (retort) are described. The furnace is used as part of a pyrochemical process for the electrometallurgical treatment of spent light water reactor fuel. The focus is on the components that contain the metal melts and vapors. The forerunner of this paper focuses on the design of the induction power system. The equipment was designed to separate volatile from nonvolative metals; after separation, the nonvolatile metals are consolidated into a stillpot product. Twelve experimental runs were conducted; in seven, we used zinc as the distillate, and in five we used zinc-magnesium. In one of the runs, uranium was the stillpot product, and in two runs, copper was used as a substitute for uranium. After solving problems caused by violent evaporation, reboiling of the collected distillate, and blockage of the vapor path, we were able to evaporate the zinc and magnesium with distillate losses <6%. In some cases, the loss was as low as 0.3%. The stillpot product was successfully consolidated. Complete recovery of the stillpot product was achieved in one run.