ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Sushil K. Bhatnagar
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 224-230
Technical Paper | Radiation Protection | doi.org/10.13182/NT97-A35413
Articles are hosted by Taylor and Francis Online.
Penetration shielding design for primary and secondary shield walls in a nuclear power plant proceeds in several iterative cycles. These cycles are needed to refine the conceptual designs for numerous, often conflicting, requirements. These requirements include the following: worker occupancy, in-service inspections, ventilation, pressure and temperature transient controls, equipment qualification, etc. Because the determination of neutron and gamma radiation levels in the containment building of a nuclear power plant requires a three-dimensional calculation, which is both very complicated and expensive, simplified but conservative procedures are needed to provide that input for various other analyses. Once an optimized design is developed, it can be confirmed by either a full three-dimensional analysis or acceptable combinations of discrete ordinates and Monte Carlo methods. The isotropic analog method and its enhancement are presented to provide such an alternative. Included are the methodology, its justification, confirmation, limitations, and suggestions for additional development. This method has already been used for the shielding design of two nuclear power plants and shown to be conservative by a factor of between 2 and 5.