ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
Dong-Kwon Keum, Chung-Kyun Park, Pil-Soo Hahn, Tjalle T. Vandergraaf
Nuclear Technology | Volume 120 | Number 3 | December 1997 | Pages 211-223
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT97-A35412
Articles are hosted by Taylor and Francis Online.
Modifications have been made to an existing stratified channel contaminant transport model by incorporating hydrodynamic dispersion in each channel. The integrals in the modified model are solved by a numeric method. Gaussian quadrature integration formulas were used to solve the equation, including the Gauss-Laguerre quadrature to deal with the upper infinite limit of the integral. This approach proved to be both accurate and efficient. The effects of physicochemical parameters on the elution breakthrough curve have been studied with this model. The parameters that were considered were (a) the standard deviation of a lognormal distribution of the channel width, (b) longitudinal dispersivity, (c) water velocity, (d) fracture length, (e) surface sorption coefficient, and (f) rock matrix diffusivity. Results from the calculations showed that the hydrodynamic dispersion in each channel caused additional dispersion in the elution profile. A new parameter, which quantifies rock matrix dif fusion and residence time of the solute in the fracture simultaneously, and its reference value are presented. This parameter is useful to determine numerically if the diffusion into the rock matrix is a significant contribution to the transport of the tracer through the fracture. This parameter can also be used in the design of migration experiments intended to observe diffusion into the rock matrix. The modified model has been used to analyze two independent experimental data sets obtained for a conservative tracer, one obtained in an artificial fracture and the other in a natural fracture. The results obtained with this modified model were in good agreement with both sets of experimental results. The dispersivities for both experimental systems were determined by curve fitting, and similar values were obtained for both types of fracture. The values obtained for the natural fracture especially indicated that both local hydrodynamic and channeling dispersion occurred.