ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Eric P. Loewen, Ronald G. Ballinger, Jeongyoun Lim
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 436-456
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-A3541
Articles are hosted by Taylor and Francis Online.
The performance of structural materials in lead or lead-bismuth eutectic (LBE) systems is evaluated. The materials evaluated included refractory metals (W, Mo, and Ta), several U.S. steels [austenitic steel (316L), carbon steels (F-22, Fe-Si), ferritic/martensitic steels (HT-9 and 410)], and several experimental Fe-Si-Cr alloys that were expected to demonstrate corrosion resistance. The materials were exposed in either an LBE rotating electrode or a dynamic corrosion cell for periods from 100 to 1000 h at temperatures of 400, 500, 600, and 700°C, depending on material and exposure location. Weight change and optical scanning electron microscopy or X-ray analysis of the specimen were used to characterize oxide film thickness, corrosion depth, microstructure, and composition changes. The results of corrosion tests validate the excellent resistance of refractory metals (W, Ta, and Mo) to LBE corrosion. The tests conducted with stainless steels (410, 316L, and HT-9) produced mass transfer of elements (e.g., Ni and Cr) into the LBE, resulting in degradation of the material. With Fe-Si alloys a Si-rich layer (as SiO2) is formed on the surface during exposure to LBE from the selective dissolution of Fe.