ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Mirion announces appointments
Mirion Technologies has announced three senior leadership appointments designed to support its global nuclear and medical businesses while advancing a company-wide digital and AI strategy. The leadership changes come as Mirion seeks to advance innovation and maintain strong performance in nuclear energy, radiation safety, and medical applications.
Lane S. Paschal, C. L. Bentley,† Michael E. Dunn,‡ S. Goluoglu, R. E. Pevey, H. L. Dodds
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 295-305
Technical Paper | Nuclear Criticality Safety | doi.org/10.13182/NT97-A35405
Articles are hosted by Taylor and Francis Online.
A criticality safety study of diffusion cascade coolers in a shutdown state is presented. The coolers represent six typical cascade coolers at a gaseous diffusion plant with accumulated deposits of UO2F2. The study involves keff calculations for the coolers with various distributions of UO2F2, which are assumed as part of several hypothetical accident scenarios. The results show that at least two independent failures must occur in order to have a criticality. Additionally, the distributions chosen represent the upper bounds for keff. Individual results show that the keff values for the cascade coolers designed for 80 and 97% enriched UF6 with deposit amounts <2.409 and 2.185 kg, respectively, will not exceed 0.9 for the accident scenarios modeled. All other coolers require shell-side flooding with H2O in order to cause a criticality, which is possible only if two or more independent failures occur.