ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
October 2025
Fusion Science and Technology
Latest News
Hot Fuel Examination Facility named a Nuclear Historic Landmark
The American Nuclear Society recently announced the designation of three new nuclear historic landmarks: the Hot Fuel Examination Facility (HFEF), the Neely Nuclear Research Center, and the Oak Ridge Gaseous Diffusion Plant. Today’s article, the first in a three-part series, will focus on the historical significance of HFEF.
Joachim K. Axmann
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 276-291
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35403
Articles are hosted by Taylor and Francis Online.
The combination of traditional evolution strategies and heuristics from expert knowledge leads to the RELOPAT optimization program. In combination with reactor simulation codes—in this investigation the nodal reactor code PRISM of Siemens/KWU— a powerful program system for the design of a numerically optimized pressurized water reactor (PWR) loading pattern was designed. Furthermore, the technic of parallel computing was introduced successfully. Simple parallel algorithmic structures on the level of optimization algorithms, combined with a low amount of communication between processors, allow workstation clusters to be used efficiently. Highly promising results were obtained by comparing recalculations of different known loading patterns for several PWRs of different sizes and varying constraints with solutions based on human expertise. The economic potential of the improvements now leads to a program that meets industrial requirements.