ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Chris Wagner: The role of Eden Radioisotopes in the future of nuclear medicine
Chris Wagner has more than 40 years of experience in nuclear medicine, beginning as a clinical practitioner before moving into leadership roles at companies like Mallinckrodt (now Curium) and Nordion. His knowledge of both the clinical and the manufacturing sides of nuclear medicine laid the groundwork for helping to found Eden Radioisotopes, a start-up venture that intends to make diagnostic and therapeutic raw material medical isotopes like molybdenum-99 and lutetium-177.
Shahla Keyvan, Mark L. Kelly, Xiaolong Song
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 269-275
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35402
Articles are hosted by Taylor and Francis Online.
Nuclear fuel must be of high quality before being placed into service in a reactor. Nuclear fuel vendors currently use manual inspection for quality control of the nuclear fuel pellets before they are inserted into the zirconium fuel rods and bundled into assemblies. The feasibility of automating the pellet inspection process using artificial neural networks is examined to improve accuracy, speed, and cost; to reduce employee radiation doses; and to provide defect statistics to the fuel manufacturer. Sample nuclear fuel pellets (252 pellets) are photographed and scanned, and appropriate feature extraction techniques are developed and applied to the scanned images. The extracted features are then used as inputs to a backpropagation neural network. The results indicate that a backpropagation neural network is capable of classifying pellets as good (passing) or bad (failing) with high accuracy.