ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Shahla Keyvan, Mark L. Kelly, Xiaolong Song
Nuclear Technology | Volume 119 | Number 3 | September 1997 | Pages 269-275
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35402
Articles are hosted by Taylor and Francis Online.
Nuclear fuel must be of high quality before being placed into service in a reactor. Nuclear fuel vendors currently use manual inspection for quality control of the nuclear fuel pellets before they are inserted into the zirconium fuel rods and bundled into assemblies. The feasibility of automating the pellet inspection process using artificial neural networks is examined to improve accuracy, speed, and cost; to reduce employee radiation doses; and to provide defect statistics to the fuel manufacturer. Sample nuclear fuel pellets (252 pellets) are photographed and scanned, and appropriate feature extraction techniques are developed and applied to the scanned images. The extracted features are then used as inputs to a backpropagation neural network. The results indicate that a backpropagation neural network is capable of classifying pellets as good (passing) or bad (failing) with high accuracy.