ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Ronald G. Ballinger, Jeongyoun Lim
Nuclear Technology | Volume 147 | Number 3 | September 2004 | Pages 418-435
Technical Paper | Medium-Power Lead-Alloy Reactors | doi.org/10.13182/NT04-A3540
Articles are hosted by Taylor and Francis Online.
The viability of advanced Pb- or Pb-Bi-cooled fast reactor systems will depend on the development of classes of materials that can operate over the temperature range 650-1200°C. We briefly review the current state of the technology concerning the interaction of Pb and Pb-Bi alloys with structural materials. We then identify the key challenges to successful use of materials in these systems and suggest a path forward to the development of new materials and operating methods to allow higher-temperature operation. Our focus is on the necessary trade-offs that must be considered and how these trade-offs influence R&D choices. Our analysis suggests that three classes of materials will be needed for successful deployment of a lead-alloy-cooled reactor system. A lower-temperature qualified material will be necessary for the pressure boundary. The structural and cladding materials will require 1000°C- and 1200°C-class materials. The 1000°C-class material will be exposed to the 1000°C coolant. The 1200°C-class material will be required for the cladding and structural materials in the core region. The higher-temperature material will be required to accommodate anticipated temperature transients from potential accident scenarios, such as a loss of flow.