ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
X-energy raises $700M in latest funding round
Advanced reactor developer X-energy has announced that it has closed an oversubscribed Series D financing round of approximately $700 million. The funding proceeds are expected to be used to help continue the expansion of its supply chain and the commercial pipeline for its Xe-100 advanced small modular reactor and TRISO-X fuel, according the company.
Hyoung Tae Kim, Hee Cheon No
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 98-104
Technical Note | Heat Transfer and Fluid Flow | doi.org/10.13182/NT77-A35397
Articles are hosted by Taylor and Francis Online.
The improvement of RELAP5/MOD3.1 code predictive capability for steam condensation on an inclined surface is investigated. In modeling the secondary condensers with RELAP5, two problems were encountered with respect to condensation in vertically stacked tube walls: the capability for turbulent film condensation and the effect of the wall node size on the prediction of condensation heat transfer coefficients (HTCs). The code original model based on the Nus-selt model for laminar film condensation is extended to the turbulent film condensation by introducing two previously developed models into the code. The code is further improved to properly take into account the condensation length over many nodings. To eliminate the dependence on the node size in predicting the condensation HTC of the code, film Reynolds numbers at each node are calculated recursively to track the growing condensate film thickness along the condensation length. The modified version is tested under idealized boundary conditions and with the simulation of secondary condensers and is compared with an analytical solution and the original code. It turns out that the simulation results by this modified version are independent of the node size and are in better agreement with the analytical solution than those by the original one.