ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Dragonfly, a Pu-fueled drone heading to Titan, gets key NASA approval
Curiosity landed on Mars sporting a radioisotope thermoelectric generator (RTG) in 2012, and a second NASA rover, Perseverance, landed in 2021. Both are still rolling across the red planet in the name of science. Another exploratory craft with a similar plutonium-238–fueled RTG but a very different mission—to fly between multiple test sites on Titan, Saturn’s largest moon—recently got one step closer to deployment.
On April 25, NASA and the Johns Hopkins University Applied Physics Laboratory (APL) announced that the Dragonfly mission to Saturn’s icy moon passed its critical design review. “Passing this mission milestone means that Dragonfly’s mission design, fabrication, integration, and test plans are all approved, and the mission can now turn its attention to the construction of the spacecraft itself,” according to NASA.
Yassin A. Hassan, Andrey A. Troshko
Nuclear Technology | Volume 119 | Number 1 | July 1997 | Pages 29-37
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT77-A35392
Articles are hosted by Taylor and Francis Online.
The thermal-hydraulic CATHARE V1.3U code has been used to simulate an International Standard Problem (ISP38) experiment conducted at BETHSY Integral Test Facility located in Grenoble, France. This experiment presents simulation of the loss of residual heat removal system during midloop operation. It involved opening of the pressurizer man way and steam generator outlet plenum man way simultaneously with switching on the heating rod power to simulate the decay heat. The total power level of 138 kW was kept unchanged throughout the test. Mass discharge through both manways led to core boiling and uncovery. The test was stopped when the primary cooling system was filled back to a midloop level. Overall, the code’s prediction and experimental data were found to be in reasonable qualitative agreement. However, the code underestimated the time of the core uncovery and the actuation of the gravity feed injection because of the overprediction of the discharge through the steam generator man way during the initial stage of the transient. This was caused by misestimation of the phase separation effect at the hot leg/surge line tee junction and significant water entrainment into the surge line at the beginning of the test. It was found that the upward tee junction model needs to be refined for the low-pressure transients.