ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
November 2025
Latest News
DOE saves $1.7M transferring robotics from Portsmouth to Oak Ridge
The Department of Energy’s Office of Environmental Management said it has transferred four robotic demolition machines from the department’s Portsmouth Site in Ohio to Oak Ridge, Tenn., saving the office more than $1.7 million by avoiding the purchase of new equipment.
Ralf Wittmaack
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 158-180
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT97-A35384
Articles are hosted by Taylor and Francis Online.
New design features of future reactors are being developed to ensure the integrity of the reactors under severe accident conditions. These features include the spreading of corium with subsequent flooding and cooling. Numerical simulations are performed to reduce the number of necessary large-scale experiments with radioactive material. For this reason, the development, verification, and validation of simulation methods are important foci. A method for predicting three-dimensional free-surface flows of a single-component, incompressible Newtonian fluid is presented. The thermodynamics and discrete phase transitions are simulated also. In addition to the fluid, structural materials are considered as hydrodynamic obstacles and heat structures. The method is applied to several flow, heat transfer, and phase transition problems of water and glycerol and of cerrotru (low-melting Bi-Sn alloy), thermite, and corium melts. The predictions provide a satisfactory representation of the experimental data and analytical solutions. Different physical processes are analyzed, e.g., gravity waves, creeping flows, Bénard convection, and thermodynamic interactions of fluid, structural material, and surroundings. The method is applied to the layout and design of experiments and exvessel corium-retention devices in nuclear reactors.