ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Smarter waste strategies: Helping deliver on the promise of advanced nuclear
At COP28, held in Dubai in 2023, a clear consensus emerged: Nuclear energy must be a cornerstone of the global clean energy transition. With electricity demand projected to soar as we decarbonize not just power but also industry, transport, and heat, the case for new nuclear is compelling. More than 20 countries committed to tripling global nuclear capacity by 2050. In the United States alone, the Department of Energy forecasts that the country’s current nuclear capacity could more than triple, adding 200 GW of new nuclear to the existing 95 GW by mid-century.
André Puill, Jean Bergeron
Nuclear Technology | Volume 119 | Number 2 | August 1997 | Pages 123-140
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT97-A35381
Articles are hosted by Taylor and Francis Online.
An objective is to enhance the use of plutonium in conventional or slightly modified pressurized water reactors, while minimizing minor actinide production. Having entirely mixed-oxide-fueled reactors reduces the number of reactors that are affected on plutonium recycling and avoids the need for fuel zoning. However, the overall consumption is <30%, and the mass of minor actinides produced is considerable, representing up to 25 % of the plutonium used. The Advanced Plutonium Fuel Assembly concept, based on a uranium-free plutonium fuel, which achieves high burnups and an increased moderation ratio, enables 60% of the second-generation plutonium to be consumed, while the minor actinides produced only represent 8% of this figure. The heterogeneous design of the fuel assembly, which includes natural uranium or low-enriched uranium fuel rods, guarantees values that suit the physical parameters of the core. The concept was analyzed from a thermo-hydraulic aspect in both rated and accident situations. Technological feasibility is yet to be demonstrated. This study is part of a medium-term strategy for the back end of the fuel cycle.